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Definitions

Let L/K be a field extension.

A K -Hopf algebra H is a K -vector space
equipped with five K -linear maps µ, ι,∆, ε,S (multiplication, unit,
comultiplication, counit, antipode) such that (H, µ, ι,∆, ε) is a
K -bialgebra.
We say that H gives a Hopf-Galois structure on L/K if: H acts on L such
that ∀h ∈ H x , y ∈ L,

∆(h) · (x ⊗ y) =
∑
(h)

(h(1) · x)⊗ (h(2) · y)

and the K -linear map θ : L⊗ L→ Hom(H, L), θ(x ⊗ y)(h) = x(h · y) is
bijective.
The classic example of a Hopf-Galois structure on a Galois extension with
Galois group G is that given by the group-algebra K [G ].
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Byott’s translation

L/K be a finite separable field extension. E the normal closure of L/K ,
G = Gal(E/K ), G ′ = Gal(E/L), and X = G/G ′.

Then (by Greither & Pareigis [GP87]) there is a bijective correspondence
between Hopf-Galois structures H on L/K , and regular subgroups N of
Perm(X ) normalised by the image of the left translations λ(G ):
H = E [N]G .
We say that the abstract isomorphism type of N is the type of the
Hopf-Galois structure.

Theorem 1.1 (Byott 1996)

There is a bijection between

N = {α : N → Perm(X ) | α inj. hom. s.t. α(N) is regular} , and

G =
{
β : G → Perm(N) | β inj. hom. s.t. β(G ′) = Stab(1N)

}
.

α(N) is normalised by λ(G ) iff β(G ) is contained in Hol(N).
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Counting formula

Lemma 1.2 (Byott 1996)

Let e(G ,N) = #HGS of type N which realise G ,

e ′(G ,N) =

∣∣∣∣{M < Hol(N) transitive | M
φ∼= G s.t. φ(StabM(1N)) = G ′

}∣∣∣∣ .
Then

e(G ,N) =
|Aut(G ,G ′)|
|Aut(N)|

= e ′(G ,N).

Aut(G ,G ′) =
{
θ ∈ Aut(G ) | θ(G ′) = G ′

}
.
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Strategy

The strategy of categorising and counting Hopf-Galois structures becomes:

• Give a characterisation for the groups N we want to study.

• For each N, compute the transitive subgroups G of Hol(N) (NB: for a
Galois extension, |G | = |N|, so look at regular subgroups).

• Determine which G are isomorphic as permutation groups (that is, for
two such groups G1,G2, there is an isomorphism between them which
takes StabG1(1N) to StabG2(1N)).

• Compute Aut(G ,G ′) in each case, and use Lemma 1.2 to count the
number of Hopf-Galois structures of type N which realise G .

• Suppose one finds a G1 < Hol(N1) and a G2 < Hol(N2) with
G1
∼= G2, then we see that G1

∼= G2 admits Hopf-Galois structures of
types N1 and N2.
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Squarefree extensions

We look at separable (but not necessarily normal) field extensions of
squarefree degree.

• Part I: extensions of degree pq where p, q distinct odd primes.

• Part II: other degree pq extensions.

• Part III: more general squarefree extensions

• Part IIIa: extensions of degree pqr where p, q, r distinct odd
primes.

• Part IIIb: extensions of degree n = p1 · · · pm where
pi = 2pi+1 + 1.

• Part IIIc: what’s next?
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Remark 1.3

- Byott & Alabdali [AB20] looked at Galois extensions of squarefree degree.

- Byott & Martin-Lyons [BML22] looked at separable extensions of degree
pq with p = 2q + 1 (q is a Sophie Germain prime and p is a safe prime) -
this was talked about in last year’s conference.
- This talk extends that theory.- The work of Crespo & Salguero in [CS20]
which looks at degree p2 and 2p completes the product of two primes
discussion.

An abstract group of order pq has presentation:

N ∼= 〈σ, τ | σp = τq = 1, τστ−1 = σk〉

where k is either 1 or has order q mod p, giving the two groups Cpq and
Cp o Cq.
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Cyclic case

Let N ∼= Cpq and:

p − 1 = qe0`e11 · · · `
em
m ,

q − 1 = `f11 · · · `
fm
m ,

e0 > 0, ei , fi ≥ 0 for 1 ≤ i ≤ m, and max {em, fm} > 0.

Aut(N) ∼= Aut(〈σ〉)× Aut(〈τ〉) is generated by the following elements:

α ∈ Aut(〈σ〉) s.t. ord(α) = qe0 ,

αi ∈ Aut(〈σ〉) s.t. ord(αi ) = `eii ,

βi ∈ Aut(〈τ〉) s.t. ord(βi ) = `fii ,

Aut(N) ∼= 〈α〉 × 〈α1, β1〉 × · · · × 〈αm, βm〉.
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p − 1 = qe0`e11 · · · `
em
m ,

q − 1 = `f11 · · · `
fm
m ,

e0 > 0, ei , fi ≥ 0 for 1 ≤ i ≤ m, and max {em, fm} > 0.
Aut(N) ∼= Aut(〈σ〉)× Aut(〈τ〉) is generated by the following elements:
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Transitive subgroups of the unique Hall {p, q}-subgroup H = 〈σ, τ, α〉:

N,

H,

Jt,c0 :=
〈
σ,
[
τ, αqe0−c0 t

]〉
.

Every transitive subgroup of Hol(N) must contain either N or some Jt,c0 ;
N is normalised by Aut(N); Jt,c0 is normalised by Aut(〈σ〉). So any
transitive subgroup of Hol(N) has of one of the following two forms:

N o A, A any subgroup of Aut(N)

Jt,c0 o B, B any subgroup of Aut(〈σ〉)
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Subgroups of Aut(〈σ〉):

〈
αqe0−c0 t0 , α

`
e1−c1
1 t1
1 , · · · , α`

em−cm
m tm
m

〉
.

Subgroups

of Aut(N) are of the form A0 × A1 × · · · × Am where A0 < 〈α〉, and
Ai < 〈αi , βi 〉.

Lemma 2.1

The subgroups of 〈αi , βi 〉 are as follows:

(i)

〈
α
`
ei−ci1
i
i , β

`
fi−di2
i

i

〉
,

(ii)

〈
α
ni `

ei−ci1
i

i β
`
fi−di1
i

i

〉
,

(iii)

〈
α
ni `

ei−ci1
i

i β
`
fi−di1
i

i , β
`
fi−di2
i

i

〉
.

Conditions on indices omitted.
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Lemma 2.2 (isomorphisms)

Let A,A′ < Aut(N) and B,B ′ < Aut(〈σ〉).

Then

N o A ∼= N o A′ =⇒ A = A′

and
Jt,c0 o B ∼= Jt,c0 o B ′ =⇒ B = B ′.

Further, we have that Jt,c0
∼= Jt′,c0 ∀t, t ′ coprime to q.

Theorem 2.3

For groups of type N o A for some A < Aut(N), or of type Jt,c0 o B for
some B 6= {1}, there is a unique Hopf-Galois structure of cyclic type.
For groups of type Jt,c0 , there are p Hopf-Galois structures of cyclic type.

G ∼= ((Cp o Cqc0d1)× (Cq o Cd2)) o Cd3

where d1, d2, d3 are some divisors of ϕ(n) coprime to n.
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We have, in total:

(1 + e0)
∏

1≤i≤m

[
(ei + 1)(fi + 1) + fi (`

ei
i − 1) + Σi

]
+ e0

∏
1≤i≤m

(ei + 1)

isomorphism types of permutation groups G of degree pq which are
realised by a Hopf-Galois structure of cyclic type. (Σi gives a count of the
number of subgroups of 〈αi , βi 〉 of type (iii), formula omitted).

Remark 2.4

Setting e0 = 1, `1 = 2, e1 = 1, f1 = r , s = `f22 · · · `fmm , ei = 0 for 2 ≤ i ≤ n,
and noting that Σi = 0 for 1 ≤ i ≤ n, we retrieve the result of Byott and
Martin-Lyons that there are

(6r + 4)
∏

2≤i≤n
(fi + 1) + 2 = (6r + 4)σ0(s) + 2

(σ0(s) counts the number of divisors of s) isomorphism types of
permutation groups G of degree pq (with p = 2q + 1 a Sophie Germain
prime pair) which are realised by a Hopf-Galois structure of cyclic type.
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Metabelian case
Let N ∼= Cp o Cq. Aut(N) has order p(p − 1) = pqe0s where s | p − 1
coprime to q, and is generated by α, β, ε of orders qe0 , s, p respectively
such that

α(σ) = σaα , α(τ) = τ,

β(σ) = σaβ , β(τ) = τ,

ε(σ) = σ, ε(τ) = στ.

|Hol(N)| = p2qe0+1s
Idea: (σεk−1)τ = τ(σεk−1), so:

Hol(N) = 〈σ, τ〉o 〈α, β, ε〉 ∼= 〈σ, σεk−1〉o 〈τ, α, β〉 ∼= F2
p o 〈T ,A,B〉.

T =

(
k 0
0 1

)
, A =

(
aα 0
0 aα

)
, B =

(
aβ 0
0 aβ

)
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Identify F2
p = 〈e1, e2〉 with 〈σ, σεk−1〉.

Lemma 2.5

A subgroup M of Hol(N) is transitive on N if and only if it satisfies the
following two conditions:

(i) the image of M under the quotient map Hol(N)→ 〈T ,A,B〉 is one of〈
TAuqe0−c0 ,Bs/d

〉
, u ∈ (Z/qc0Z)×, 0 ≤ c0 ≤ e0, d |s,〈

T ,Aqe0−c0 ,Bs/d
〉

, 1 ≤ c0 ≤ e0, d |s.

(ii) M ∩ P is one of F2
p, Fpe1, Fpe2, each of which is normalised by

〈T ,A,B〉.
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Lemma 1

The transitive subgroups of order divisible by p2q are:

(i) P o
〈
TAuqe0−c0 ,Bs/d

〉
, u ∈ (Z/qc0Z)×, 0 ≤ c0 ≤ e0, d |s. These

groups have order dp2qmax{1,c0}.

(ii) P o
〈
T ,Aqe0−c0 ,Bs/d

〉
, 1 ≤ c0 ≤ e0, d |s. These groups have order

dp2q1+c0 .

Now suppose p2 - |M|, we have that, for some 0 ≤ c0 ≤ e0,
u ∈ (Z/qc0Z)×, d | s, and λ, µ, ν ∈ Fp, M is generated by the set:

(I)
{

ei , [λei ,TA
uqe0−c0 ], [µei ,B

s/d ]
}

, or the set

(II)
{

ei , [λei ,T ], [µei ,A
qe0−c0 ], [νei ,B

s/d ]
}

.

where i ∈ {1, 2}.
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Group Structure

P o
〈
T ,Aqe0−c0 ,Bs/d

〉
(N o (Cp o Cqc0 )) o Cd

P o
〈
TAuqe0−c0 ,Bs/d

〉
, (c0, u) 6= (0, u), (1,−1) F2

p ou Cdqc0

P o
〈
T ,Bs/d

〉
((Cp o Cq)× Cp) o Cd

〈e1,T ,Bs/d〉 Cp o Cdq

〈e1,TAuqe0−c0 ,Bs/d〉, (c0, u) 6= (0, u), (1,−1) Cp o Cdqc0

〈e1,TA−q
e0−1

,Bs/d〉 (Cp o Cd)× Cq

〈e1,T ,Aqe0−c0 ,Bs/d〉 (Cp o Cdqc0 )× Cq

〈e2,TA−q
e0−1

,Bs/d〉 Cp o Cdq

〈e2,T ,Bs/d〉 (Cp o Cd)× Cq

Table: Isomorphism types of transitive groups for N metabelian.
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Group Structure

〈e2,TAuqe0−c0 ,Bs/d〉 Cp o Cdqc0

〈e2,T ,Aqe0−c0 ,Bs/d〉 (Cp o Cdqc0 )× Cq

〈e1,T 〉 Cp o Cq

〈e1,TAuqe0−c0 〉, (c0, u) 6= (0, u), (1,−1) Cp o Cqc0

〈e1,TA−q
e0−1〉 Cpq

〈e1,T ,Aqe0−c0 〉 (Cp o Cqc0 )× Cq

〈e2,TA−q
e0−1〉 Cp o Cq

〈e2,T 〉 Cpq

〈e2,TAuqe0−c0 〉 Cp o Cqc0

〈e2,T ,Aqe0−c0 〉 (Cp o Cqc0 )× Cq

Table: Isomorphism types of transitive groups for N metabelian.
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M ′ = M ∩ Aut(N) = M ∩ 〈e1 − e2,A,B〉

Structure #groups |Aut(M,M ′)| #HGS

(N o (Cp o Cqc0 )) o Cd , c0 6= 0 1 2p(p − 1) 2

(Cp o Cq)× Cp 2 p2(p − 1) 2p
F2
p ou Cqc0 , (c0, u) 6= (0, u), (1,−1), 2 p2(p − 1) 2p

u ∈ (Z/qc0Z)× \
{
1
2(qc0 − qc0−1)

}
F2
p o 1

2
(qc0−qc0−1) Cqc0 , c0 6= 0 1 2p2(p − 1) 2p

(Cp × (Cp o Cq)) o Cd , d > 1 2 p(p − 1) 2
F2
p ou Cdqc0 , (c0, u) 6= (0, u), (1,−1), d > 1 2 p(p − 1) 2

u ∈ (Z/qc0Z)× \
{
1
2(qc0 − qc0−1)

}
F2
p o 1

2
(qc0−qc0−1) Cdqc0 , c0 6= 0, d > 1 1 2p(p − 1) 2

Cp o Cdqc0 , (c0, d) 6= (1, 1), (0, d) 2pϕ(qc0) p − 1 2ϕ(qc0)

Cp o Cq 2p(q − 1) + 2 p(p − 1) 2p(q − 2) + 2

(Cp o Cdqc0 )× Cq 2p (p − 1)(q − 1) 2(q − 1)

Table: Transitive subgroups for N metabelian.
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Theorem 2.6

In total, there are

σ0(s)

[
3e0 + 2 +

1

2
(qe0 − 1)

]
isomorphism types of permutation groups G of degree pq which are
realised by Hopf-Galois structures of non-abelian type Cp o Cq.

Structure # cyclic type HGS # non-abelian type HGS

(Cp o Cdqc0 )× Cq 1 2(q − 1)

Cp o Cdqc0 , (c0, d) 6= (1, 1), (0, d) 1 2ϕ(qc0)

Cp o Cq p 2p(q − 2) + 2

Table: Groups admitting Hopf-Galois structures of both types.
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Remark 2.7

Specialising to the Sophie Germain case, we obtain
2(3 + 2 + 1

2(q − 1)) = q + 9 isomorphism types. This retrieves the result
of Byott & Martin-Lyons.

Main comparisons:

• The arbitrary e0 introduces many more groups to work with.

• We think about u ∈ (Z/qc0Z)× instead of just 1 ≤ u ≤ q − 1.

• groups of the same order seem to reflect Sophie-Germain case - there
aren’t many more starkly different structures arising.

• Bs/d behaves almost exactly the same as to when s = 2 in
Sophie-Germain.
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Intermediate fields

L/K is only one degree pq intermediate field between E and K . What
about the others? There’s no guarantee that the Hopf-Galois structures on
these fields F even exist!

Recall the two groups G and G ′; together we can consider the pair (G ,G ′)
a permutation group. Here G ′ is a subgroup of index n and trivial core,
that is

CoreG (G ′) = ∩g∈GgG ′g−1 = {1} .

We work with the index pq subgroups H of G (so that F = HE ).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 20 / 37



Intermediate fields

L/K is only one degree pq intermediate field between E and K . What
about the others? There’s no guarantee that the Hopf-Galois structures on
these fields F even exist!
Recall the two groups G and G ′; together we can consider the pair (G ,G ′)
a permutation group. Here G ′ is a subgroup of index n and trivial core,
that is

CoreG (G ′) = ∩g∈GgG ′g−1 = {1} .

We work with the index pq subgroups H of G (so that F = HE ).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 20 / 37



Intermediate fields

The possibilities:

– H is conjugate to G ′ (thus F is conjugate to L).

– H is not conjugate to G ′, but there is some φ ∈ Aut(G ) with
φ(G ′) = H.

– G ′ and H lie in separate Aut(G )-orbits, but
CoreG (H) :=

⋂
g∈G gHg−1 = {1}.

• H and G ′ may or may not be isomorphic as abstract groups.
• F/K may or may not admit a Hopf-Galois structure; if it does,

then (G ,H) will show up as a transitive subgroup of Hol(N) for
some N of order n.

– G ′ and H lie in separate Aut(G )-orbits and C := CoreG (H) 6= {1},
and so F would have smaller normal closure, EC , yielding the
permutation group (G/C ,H/C ).

• We again ask ourselves if this corresponds to a transitive
subgroup of some Hol(N).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 21 / 37



Intermediate fields

The possibilities:

– H is conjugate to G ′ (thus F is conjugate to L).

– H is not conjugate to G ′, but there is some φ ∈ Aut(G ) with
φ(G ′) = H.

– G ′ and H lie in separate Aut(G )-orbits, but
CoreG (H) :=

⋂
g∈G gHg−1 = {1}.

• H and G ′ may or may not be isomorphic as abstract groups.
• F/K may or may not admit a Hopf-Galois structure; if it does,

then (G ,H) will show up as a transitive subgroup of Hol(N) for
some N of order n.

– G ′ and H lie in separate Aut(G )-orbits and C := CoreG (H) 6= {1},
and so F would have smaller normal closure, EC , yielding the
permutation group (G/C ,H/C ).

• We again ask ourselves if this corresponds to a transitive
subgroup of some Hol(N).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 21 / 37



Intermediate fields

The possibilities:

– H is conjugate to G ′ (thus F is conjugate to L).

– H is not conjugate to G ′, but there is some φ ∈ Aut(G ) with
φ(G ′) = H.

– G ′ and H lie in separate Aut(G )-orbits, but
CoreG (H) :=

⋂
g∈G gHg−1 = {1}.

• H and G ′ may or may not be isomorphic as abstract groups.
• F/K may or may not admit a Hopf-Galois structure; if it does,

then (G ,H) will show up as a transitive subgroup of Hol(N) for
some N of order n.

– G ′ and H lie in separate Aut(G )-orbits and C := CoreG (H) 6= {1},
and so F would have smaller normal closure, EC , yielding the
permutation group (G/C ,H/C ).

• We again ask ourselves if this corresponds to a transitive
subgroup of some Hol(N).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 21 / 37



Intermediate fields

The possibilities:

– H is conjugate to G ′ (thus F is conjugate to L).

– H is not conjugate to G ′, but there is some φ ∈ Aut(G ) with
φ(G ′) = H.

– G ′ and H lie in separate Aut(G )-orbits, but
CoreG (H) :=

⋂
g∈G gHg−1 = {1}.

• H and G ′ may or may not be isomorphic as abstract groups.
• F/K may or may not admit a Hopf-Galois structure; if it does,

then (G ,H) will show up as a transitive subgroup of Hol(N) for
some N of order n.

– G ′ and H lie in separate Aut(G )-orbits and C := CoreG (H) 6= {1},
and so F would have smaller normal closure, EC , yielding the
permutation group (G/C ,H/C ).

• We again ask ourselves if this corresponds to a transitive
subgroup of some Hol(N).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 21 / 37



Intermediate fields

The possibilities:

– H is conjugate to G ′ (thus F is conjugate to L).

– H is not conjugate to G ′, but there is some φ ∈ Aut(G ) with
φ(G ′) = H.

– G ′ and H lie in separate Aut(G )-orbits, but
CoreG (H) :=

⋂
g∈G gHg−1 = {1}.

• H and G ′ may or may not be isomorphic as abstract groups.

• F/K may or may not admit a Hopf-Galois structure; if it does,
then (G ,H) will show up as a transitive subgroup of Hol(N) for
some N of order n.

– G ′ and H lie in separate Aut(G )-orbits and C := CoreG (H) 6= {1},
and so F would have smaller normal closure, EC , yielding the
permutation group (G/C ,H/C ).

• We again ask ourselves if this corresponds to a transitive
subgroup of some Hol(N).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 21 / 37



Intermediate fields

The possibilities:

– H is conjugate to G ′ (thus F is conjugate to L).

– H is not conjugate to G ′, but there is some φ ∈ Aut(G ) with
φ(G ′) = H.

– G ′ and H lie in separate Aut(G )-orbits, but
CoreG (H) :=

⋂
g∈G gHg−1 = {1}.

• H and G ′ may or may not be isomorphic as abstract groups.
• F/K may or may not admit a Hopf-Galois structure; if it does,

then (G ,H) will show up as a transitive subgroup of Hol(N) for
some N of order n.

– G ′ and H lie in separate Aut(G )-orbits and C := CoreG (H) 6= {1},
and so F would have smaller normal closure, EC , yielding the
permutation group (G/C ,H/C ).

• We again ask ourselves if this corresponds to a transitive
subgroup of some Hol(N).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 21 / 37



Intermediate fields

The possibilities:

– H is conjugate to G ′ (thus F is conjugate to L).

– H is not conjugate to G ′, but there is some φ ∈ Aut(G ) with
φ(G ′) = H.

– G ′ and H lie in separate Aut(G )-orbits, but
CoreG (H) :=

⋂
g∈G gHg−1 = {1}.

• H and G ′ may or may not be isomorphic as abstract groups.
• F/K may or may not admit a Hopf-Galois structure; if it does,

then (G ,H) will show up as a transitive subgroup of Hol(N) for
some N of order n.

– G ′ and H lie in separate Aut(G )-orbits and C := CoreG (H) 6= {1},
and so F would have smaller normal closure, EC , yielding the
permutation group (G/C ,H/C ).

• We again ask ourselves if this corresponds to a transitive
subgroup of some Hol(N).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 21 / 37



Intermediate fields

The possibilities:

– H is conjugate to G ′ (thus F is conjugate to L).

– H is not conjugate to G ′, but there is some φ ∈ Aut(G ) with
φ(G ′) = H.

– G ′ and H lie in separate Aut(G )-orbits, but
CoreG (H) :=

⋂
g∈G gHg−1 = {1}.

• H and G ′ may or may not be isomorphic as abstract groups.
• F/K may or may not admit a Hopf-Galois structure; if it does,

then (G ,H) will show up as a transitive subgroup of Hol(N) for
some N of order n.

– G ′ and H lie in separate Aut(G )-orbits and C := CoreG (H) 6= {1},
and so F would have smaller normal closure, EC , yielding the
permutation group (G/C ,H/C ).

• We again ask ourselves if this corresponds to a transitive
subgroup of some Hol(N).

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 21 / 37



Intermediate fields

We compute the index pq subgroups H of G and categorise them in terms
of

• conjugacy class,

• orbits under Aut(G ),

• abstract isomorphism class.

We also need to compute C = CoreG (H), and then we take G/C to see if
it appears in the list of transitive subgroups of Hol(N). For n = pq, we
find that all intermediate field extensions admit at least one
Hopf-Galois structure.
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Intermediate fields

For p = 2q + 1, it is feasible to compute everything very explicitly.
However, making use of a generalisation of Sylow’s theorems, we can
approach the problem very efficiently even for the general pq case. In
short, the work can be summarised in the following two tables:

Subgroup condition #Conj. classes #Aut(G )-orbits #Isom. classes

q2 - |G | 1 1 1

q2 | |G |, not (*) 2 2 2

q2 | |G |, (*) 2 2 1

Table: Results for index pq subgroups of Hol(N) for N cyclic.

Where (*) is the condition that G contains no automorphisms with order
coprime to pq, along with c0 = 1.
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Intermediate fields

For p = 2q + 1, it is feasible to compute everything very explicitly.
However, making use of a generalisation of Sylow’s theorems, we can
approach the problem very efficiently even for the general pq case. In
short, the work can be summarised in the following two tables:

Order of index pq subgroup #Conj. classes

pd 4

pqc0−1d , c0 > 1 4(q + 1)

pqc0d , c0 > 0 4(q + 1)

d 1

qc0−1d , c0 > 1 q + 1

qc0d , c0 > 0 q + 1

Table: Results for index pq subgroups of Hol(N) for N metabelian.
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Intermediate fields
For p = 2q + 1, it is feasible to compute everything very explicitly.
However, making use of a generalisation of Sylow’s theorems, we can
approach the problem very efficiently even for the general pq case. In
short, the work can be summarised in the following two tables:

#Aut(G )-orbits #Isom. classes

2 if (c0, u) = (1, 12(q − 1)), 1
3 otherwise

3 1

q + 3 if c0 = 1, 2
ϕ(qc0) + 6 otherwise

1 1

1 1

2 2

Table: Results for index pq subgroups of Hol(N) for N metabelian.
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Intermediate fields

There is a pattern in the tables; it looks like the groups divisible by the
same powers of p and q behave pretty much the same regardless of the
other factors coprime to pq.

- Hall’s theorem tells us why this is the case for conjugacy classes.
- It can be proved that this is the case for the Aut(G ) orbits for the
general pq case, but for more general squarefree n, the arguments look like
they are a little more subtle.
It may also be the case that for more general squarefree n, we find
intermediate fields which don’t admit Hopf-Galois structures...

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 26 / 37



Intermediate fields

There is a pattern in the tables; it looks like the groups divisible by the
same powers of p and q behave pretty much the same regardless of the
other factors coprime to pq.
- Hall’s theorem tells us why this is the case for conjugacy classes.

- It can be proved that this is the case for the Aut(G ) orbits for the
general pq case, but for more general squarefree n, the arguments look like
they are a little more subtle.
It may also be the case that for more general squarefree n, we find
intermediate fields which don’t admit Hopf-Galois structures...

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 26 / 37



Intermediate fields

There is a pattern in the tables; it looks like the groups divisible by the
same powers of p and q behave pretty much the same regardless of the
other factors coprime to pq.
- Hall’s theorem tells us why this is the case for conjugacy classes.
- It can be proved that this is the case for the Aut(G ) orbits for the
general pq case, but for more general squarefree n, the arguments look like
they are a little more subtle.

It may also be the case that for more general squarefree n, we find
intermediate fields which don’t admit Hopf-Galois structures...
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What’s next?

There are a few ways to generalise:

• pqr , p, q, r distinct odd primes,

• p = 2q + 1, q = 2r + 1, (p, q), (q, r) safe prime - Sophie Germain
prime pair,

• p1 = 2p2 + 1, p2 = 2p3 + 1, · · · , pm−1 = 2pm + 1, Cunningham chain
of length m,

• general squarefree separable extensions.
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pqr
Let n = pqr where p > q > r distinct odd primes.

G (d , e, k) =
〈
σ, τ | σe = τd = 1G , τστ

−1 = σk
〉

where pqr = de, orde(k) = d . Further, let z = gcd(k − 1, e), and
g = e/z . Due to the conditions in [Byo96], we obtain the following six
factorisations, giving rise to r + 4 groups:

d g z Condition #groups

1 1 pqr 1
r q p q ≡ 1 (mod r) 1
r p q p ≡ 1 (mod r) 1
r qp 1 q ≡ p ≡ 1 (mod r) r − 1
q p r p ≡ 1 (mod q) 1
rq p 1 p ≡ 1 (mod rq) 1

Table: Groups of order pqr
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Let N = Cpqr = 〈σ, τ, ρ | σp = τq = ρr = 1, abelian〉, with

p − 1 = r erqeq`e11 · · · `
em
s ,

q − 1 = qfq`f11 · · · `
fm
s ,

r − 1 = `h11 · · · `
hm
s .

Let

α ∈ Aut(〈σ〉) of order r er ,

β ∈ Aut(〈σ〉) of order qeq ,

αi ∈ Aut(〈σ〉) of order `eii ,

γ ∈ Aut(〈τ〉) of order r fr ,

βi ∈ Aut(〈τ〉) of order `fii ,

γi ∈ Aut(〈ρ〉) of order `hii .

So
Aut(N) ∼= 〈β〉 × 〈α, γ〉 × 〈α1, β1, γ1〉 × · · · × 〈αm, βm, γm〉.

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 29 / 37



Let N = Cpqr = 〈σ, τ, ρ | σp = τq = ρr = 1, abelian〉, with

p − 1 = r erqeq`e11 · · · `
em
s ,

q − 1 = qfq`f11 · · · `
fm
s ,

r − 1 = `h11 · · · `
hm
s .

Let

α ∈ Aut(〈σ〉) of order r er ,

β ∈ Aut(〈σ〉) of order qeq ,

αi ∈ Aut(〈σ〉) of order `eii ,

γ ∈ Aut(〈τ〉) of order r fr ,

βi ∈ Aut(〈τ〉) of order `fii ,

γi ∈ Aut(〈ρ〉) of order `hii .

So
Aut(N) ∼= 〈β〉 × 〈α, γ〉 × 〈α1, β1, γ1〉 × · · · × 〈αm, βm, γm〉.

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 29 / 37



Let N = Cpqr = 〈σ, τ, ρ | σp = τq = ρr = 1, abelian〉, with

p − 1 = r erqeq`e11 · · · `
em
s ,

q − 1 = qfq`f11 · · · `
fm
s ,

r − 1 = `h11 · · · `
hm
s .

Let

α ∈ Aut(〈σ〉) of order r er ,

β ∈ Aut(〈σ〉) of order qeq ,

αi ∈ Aut(〈σ〉) of order `eii ,

γ ∈ Aut(〈τ〉) of order r fr ,

βi ∈ Aut(〈τ〉) of order `fii ,

γi ∈ Aut(〈ρ〉) of order `hii .

So
Aut(N) ∼= 〈β〉 × 〈α, γ〉 × 〈α1, β1, γ1〉 × · · · × 〈αm, βm, γm〉.

Andrew Darlington (University of Exeter) Hopf-Galois Structures on Separable Field Extensions of Degree pq 29 / 37



The following are the transitive subgroups of the unique Hall
{p, q, r}-subgroup H = 〈σ, τ, ρ, α, β, γ〉:

(A) N ∼= Cpqr ,

(B) 〈σ, ρ, [τ, βtq
eq−d

]〉 ∼= (Cp o Cqd )× Cr ,

(C) 〈σ, τ, [ρx1 , αt1r er−e
γs1r

fr−f
]〉 ∼= Cpq o Cr ,

(D) 〈σ, [τ, βtq
eq−d

], [ρ, αsr fr−f
]〉 ∼= Cp o Cqd r f

We see that (A) is normalised by Aut(N), (B) is normalised by
Aut(〈σ〉)× Aut(〈ρ〉), (C) is normalised by Aut(〈σ〉)× Aut(〈τ〉), and (D) is
normalised by Aut(〈σ〉)
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We now have the problem of finding subgroups of 〈αi , βi , γi 〉.

We now ask
”what are the subgroups of an arbitrary abelian rank 3 `i -group?”; in more
generality (for n = p1 · · · pm), we have the problem of finding all subgroups
of an arbitrary rank m `i -group. This is a hard problem in general.
Ideas

• There is a concrete formula known for m = 3.

• No concrete formula exists for m > 3, but there are algorithms and
asymptotic formulae.

• We can focus on the general forms of these subgroups, which we can
obtain by looking at row echelon forms of m ×m matrices.

• For m = 3, there are seven distinct forms.

• In general, there are 2m − 1 possible row echelon forms (or 2m

including the zero matrix).

• Restrict the relationship between the primes in the factorisation of n.
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Cunningham chains
Let n = p1 · · · pm, where p1 = 2p2 + 1, · · · , pm−1 = 2pm + 1 (they form a
Cunningham chain of length m).

Conjecture 3.1

For any natural number m, there are infinitely many Cunningham chains of
length m.

There are m different abstract groups of order n:

• N ∼= Cn,

• Ni
∼= Cp1×Cp2×· · ·× (Cpi oCpi+1)×· · ·×Cpm−1×Cpl , 1 ≤ i ≤ m−1.

Remark 3.2

The special case m = 2 (where p = 2q + 1 with (p, q) a safe prime -
Sophie Germain prime pair) is given by the work of Byott and
Martin-Lyons in [BML22].

We can treat all the Ni in one discussion. Thus we have the two cases of
Hol(Cn), and Hol(Ni ) ∼= Hol(Cn/pipi+1

)× Hol(Cpi o Cpi+1).
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For N ∼= Cn, we have Aut(N) is generated by:

α1, β1 ∈ Aut(〈σ1〉) of orders p2, 2 respectively,

α2, β2 ∈ Aut(〈σ2〉) of orders p3, 2 respectively,

...

αm−1, βm−1 ∈ Aut(〈σm−1〉) of orders pm, 2 respectively,

γ, δ ∈ Aut(〈σm〉) of orders 2x , s respectively.

Thus

Hol(N) = 〈σ1, · · · , σm〉o (〈α1〉 × · · · × 〈αm−1〉 × 〈β1, · · · , βm−1, γ〉 × 〈δ〉)

We will need to find the subgroups of Aut(N), and in particular, the
subgroups of the rank l abelian 2-group 〈β1, · · · , βm−1, γ〉. For this, we
use a known result of the number of subgroups of (C2)l , and modify:

Σm := x
l∑

k=0

l−k∏
i=1

2i+k − 1

2i − 1
+ (1− x)

m−1∑
k=0

m−1−k∏
i=1

2i+k − 1

2i − 1
.
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We will need to find the subgroups of Aut(N), and in particular, the
subgroups of the rank l abelian 2-group 〈β1, · · · , βm−1, γ〉. For this, we
use a known result of the number of subgroups of (C2)l , and modify:

Σm := x
l∑

k=0

l−k∏
i=1

2i+k − 1

2i − 1
+ (1− x)

m−1∑
k=0

m−1−k∏
i=1

2i+k − 1

2i − 1
.
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The regular subgroups of Hol(N) are of the form

〈σ1, [σ2, αt1
1 ], · · · , [σl , α

tm−1

m−1]〉

where all but possibly one ti are zero, and in the case that tj 6= 0, we have
1 ≤ tj ≤ pj+1 − 1.

All transitive subgroups of Hol(N) are given by J o A,
where J is a regular subgroup of Hol(N) and A is some subgroup of
Aut(N) which normalises J.In total:

2m−3σ0(s) [4Σm + (m − 2)Σm−1] + 2m−2

(
m−1∑
k=0

m−1−k∏
i=1

2i+k − 1

2i − 1

)

isomorphism types of permutation groups G of degree n which are realised
by a Hopf-Galois structure of cyclic type. Each isomorphism type has a
unique such Hopf-Galois structure, unless for J ∼= Ni for some i , we have
J o A, where A ∩ Aut(〈σpi 〉) = {1}; in which case, there are pi
Hopf-Galois structures.
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For Ni , we see that Hol(Ni ) ∼= Hol(Cn/pipi+1
)× Hol(Cpi o Cpi+1). We can

therefore rely on the above theory for Hol(Cn/pipi+1
), and on [BML22] for

Hol(Cpi o Cpi+1).

The main challenge is making sure all transitive subgroups are found, as
there are transitive subgroups of Hol(Ni ) which aren’t of the form
M1 ×M2 where M1,M2 respectively are transitive subgroups of the two
factors of Hol(N), and then deciding when groups are isomorphic as
permutation groups.
The subgroups of interest are the 2-groups and the pi -groups...
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Conclusion and future

• The computations for the general length m Cunningham chains work
are still underway, but they look to be very doable.

• The m = 3 case has been fully computed, and isn’t that much of a
specialisation from the general m work.

• There is a lot more work to be done on the general pqr case, and it is
not currently known how much is actually feasible to write down or
how much we can treat different groups in a single discussion (like in
the Cunningham chains work).

• A good next step to the majority of these is to work out the index n
subgroups and look at Hopf-Galois structures on the intermediate
extensions.
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